Publications
Publications from our Network
Browse recent research publications from ELIZA students. Our work spans four key areas of AI research across seven German sites. Filter by research area and year to find specific topics.
-
- 13.08.2025
- Trans-disciplinary Applications
- Foundations of ML: Natural Language Processing
A Comprehensive Review of Datasets for Clinical Mental Health AI Systems
Mental health disorders are rising worldwide. However, the availability of trained clinicians has not scaled proportionally, leaving many people without adequate or timely support. To bridge this gap, recent studies have shown the promise of Artificial Intelligence (AI) to assist mental health diagnosis, monitoring, and intervention. However, the development of efficient, reliable, and ethical AI to assist clinicians is heavily dependent on high-quality clinical training datasets. Despite growing interest in data curation for training clinical AI assistants, existing datasets largely remain scattered, under-documented, and often inaccessible, hindering the reproducibility, comparability, and generalizability of AI models developed for clinical mental health care. In this paper, we present the first comprehensive survey of clinical mental health datasets relevant to the training and development of AI-powered clinical assistants. We categorize these datasets by mental disorders (e.g., depression, schizophrenia), data modalities (e.g., text, speech, physiological signals), task types (e.g., diagnosis prediction, symptom severity estimation, intervention generation), accessibility (public, restricted or private), and sociocultural context (e.g., language and cultural background). Along with these, we also investigate synthetic clinical mental health datasets. Our survey identifies critical gaps such as a lack of longitudinal data, limited cultural and linguistic representation, inconsistent collection and annotation standards, and a lack of modalities in synthetic data. We conclude by outlining key challenges in curating and standardizing future datasets and provide actionable recommendations to facilitate the development of more robust, generalizable, and equitable mental health AI systems.
-
- 05.08.2025
- Foundations of ML: Computer Vision
- Foundations of ML: Natural Language Processing
- Trans-disciplinary Applications
Beyond Content: How Grammatical Gender Shapes Visual Representation in Text-to-Image Models
Research on bias in Text-to-Image (T2I) models has primarily focused on demographic representation and stereotypical attributes, overlooking a fundamental question: how does grammatical gender influence visual representation across languages? We introduce a cross-linguistic benchmark examining words where grammatical gender contradicts stereotypical gender associations (e.g., ``une sentinelle'' - grammatically feminine in French but referring to the stereotypically masculine concept ``guard''). Our dataset spans five gendered languages (French, Spanish, German, Italian, Russian) and two gender-neutral control languages (English, Chinese), comprising 800 unique prompts that generated 28,800 images across three state-of-the-art T2I models. Our analysis reveals that grammatical gender dramatically influences image generation: masculine grammatical markers increase male representation to 73% on average (compared to 22% with gender-neutral English), while feminine grammatical markers increase female representation to 38% (compared to 28% in English). These effects vary systematically by language resource availability and model architecture, with high-resource languages showing stronger effects. Our findings establish that language structure itself, not just content, shapes AI-generated visual outputs, introducing a new dimension for understanding bias and fairness in multilingual, multimodal systems.
-
- 20.07.2025
- Foundations of ML
- Applications in Autonomous Systems
Learning Nonlinear Causal Reductions to Explain Reinforcement Learning Policies
Why do reinforcement learning (RL) policies fail or succeed? This is a challenging question due to the complex, high-dimensional nature of agent-environment interactions. In this work, we take a causal perspective on explaining the behavior of RL policies by viewing the states, actions, and rewards as variables in a low-level causal model. We introduce random perturbations to policy actions during execution and observe their effects on the cumulative reward, learning a simplified high-level causal model that explains these relationships. To this end, we develop a nonlinear Causal Model Reduction framework that ensures approximate interventional consistency, meaning the simplified high-level model responds to interventions in a similar way as the original complex system. We prove that for a class of nonlinear causal models, there exists a unique solution that achieves exact interventional consistency, ensuring learned explanations reflect meaningful causal patterns. Experiments on both synthetic causal models and practical RL tasks-including pendulum control and robot table tennis-demonstrate that our approach can uncover important behavioral patterns, biases, and failure modes in trained RL policies.
-
- 14.07.2025
- Foundations of ML
- Foundations of ML: Computer Vision
- ML Systems
(Almost) Free Modality Stitching of Foundation Models
Foundation multi-modal models are often designed by stitching of multiple existing pretrained uni-modal models: for example, an image classifier with an text model. This stitching process is performed by training a connector module that aims to align the representation spaces of these uni-modal models towards a multi-modal objective. However, given the complexity of training such connectors on large scale web-based datasets coupled with the ever-increasing number of available pretrained uni-modal models, the task of uni-modal models selection and subsequent connector module training becomes computationally demanding. To address this under-studied critical problem, we propose Hypernetwork Model Alignment (Hyma), a novel all-in-one solution for optimal uni-modal model selection and connector training by leveraging hypernetworks.
-
- 08.07.2025
- Foundations of ML: Computer Vision
Feed-Forward SceneDINO for Unsupervised Semantic Scene Completion
Semantic scene completion (SSC) aims to infer both the 3D geometry and semantics of a scene from single images. In contrast to prior work on SSC that heavily relies on expensive ground-truth annotations, we approach SSC in an unsupervised setting. Our novel method, SceneDINO, adapts techniques from self-supervised representation learning and 2D unsupervised scene understanding to SSC. Our training exclusively utilizes multi-view consistency self-supervision without any form of semantic or geometric ground truth. Given a single input image, SceneDINO infers the 3D geometry and expressive 3D DINO features in a feed-forward manner. Through a novel 3D feature distillation approach, we obtain unsupervised 3D semantics. In both 3D and 2D unsupervised scene understanding, SceneDINO reaches state-of-the-art segmentation accuracy. Linear probing our 3D features matches the segmentation accuracy of a current supervised SSC approach. Additionally, we showcase the domain generalization and multi-view consistency of SceneDINO, taking the first steps towards a strong foundation for single image 3D scene understanding.
-
- 05.07.2025
- Foundations of ML: Computer Vision
- Foundations of ML: Robot Learning
Temporal Continual Learning with Prior Compensation for Human Motion Prediction
Human Motion Prediction (HMP) aims to predict future poses at different moments according to past motion sequences. Previous approaches have treated the prediction of various moments equally, resulting in two main limitations: the learning of short-term predictions is hindered by the focus on long-term predictions, and the incorporation of prior information from past predictions into subsequent predictions is limited. In this paper, we introduce a novel multi-stage training framework called Temporal Continual Learning (TCL) to address the above challenges. To better preserve prior information, we introduce the Prior Compensation Factor (PCF). We incorporate it into the model training to compensate for the lost prior information. Furthermore, we derive a more reasonable optimization objective through theoretical derivation. It is important to note that our TCL framework can be easily integrated with different HMP backbone models and adapted to various datasets and applications. Extensive experiments on four HMP benchmark datasets demonstrate the effectiveness and flexibility of TCL.